Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale

Author:

Aguilar C.,Polo M. J.

Abstract

Abstract. In this study, Hargreaves' formulation is considered to be appropriate for the water and energy balance at a daily scale due to its simplicity of application once the distributed values of temperature are available at cell scale. However, the coefficient of the Hargreaves equation must be previously calibrated. The interplay of different factors at different temporal scales became evident in the calibration process at the local scale of weather stations. The best fits against daily estimates by ASCE-PM were achieved when differentiating between the wet and the dry season. For the spatial distribution of Hargreaves coefficient at watershed scale, a regionalization in the area around each weather station was proposed in terms of areas of influence. The best results at watershed scale were obtained after a spatial correction for alpine areas, when the average of the difference cell by cell between ASCE-PM and Hargreaves's distributed daily estimates were 0.02 and 0.15 mm day−1 for the wet and the dry seasons, respectively. In all the cases, the best interpolation results were obtained using C-I (calculate and interpolate) procedures.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference41 articles.

1. Aguilar, C.: Scale effects in hydrological processes. Application to the Guadalfeo river watershed (Granada), PhD Thesis, University of Córdoba, http://www.cuencaguadalfeo.com/archivos/Guadalfeo/Tesis/TesisCris_en.pdf (last access: 9 May 2011), 2008.

2. Aguilar, C., Herrero, J., and Polo, M. J.: Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale, Hydrol. Earth Syst. Sci., 14, 2479–2494, https://doi.org/10.5194/hess-14-2479-2010, 2010.

3. Alexandris, S. and Kerkides, P.: New empirical formula for hourly estimations of reference evapotranspiration, Agr. Water Manage., 60, 157–180, 2003.

4. Allen, R. G. and Pruitt, W. O.: Rational use of the FAO Blaney-Criddle formula, J. Irrig. Drain. Eng., 112, 348–368, 1986.

5. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, guidelines for computing crop water requirements, Irrig. and Drain. Pap., 56. U.N. Food and Agric. Organ., Rome, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3