INSTANCE – the Italian seismic dataset for machine learning
-
Published:2021-11-30
Issue:12
Volume:13
Page:5509-5544
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Michelini AlbertoORCID, Cianetti SpinaORCID, Gaviano Sonja, Giunchi CarloORCID, Jozinović DarioORCID, Lauciani ValentinoORCID
Abstract
Abstract. The Italian earthquake waveform data are collected here in a dataset suited for machine learning analysis (ML) applications.
The dataset consists of nearly 1.2 million three-component (3C) waveform traces from about 50 000 earthquakes and more than 130 000 noise 3C waveform traces, for a total of about 43 000 h of data and an average of 21 3C traces provided per event.
The earthquake list is based on the Italian Seismic Bulletin (http://terremoti.ingv.it/bsi, last access: 15 February 2020) of the Istituto Nazionale di Geofisica e Vulcanologia between January 2005 and January 2020, and it includes events in the magnitude range between 0.0 and 6.5.
The waveform data have been recorded primarily by the Italian National Seismic Network (network code IV) and include both weak- (HH, EH channels) and strong-motion (HN channels) recordings.
All the waveform traces have a length of 120 s, are sampled at 100 Hz,
and are provided both in counts and ground motion physical units after deconvolution of the instrument transfer functions.
The waveform dataset is accompanied by metadata consisting of more than 100 parameters providing comprehensive information on the earthquake source, the recording stations, the trace features, and other derived quantities.
This rich set of metadata allows the users to target the data selection for their own purposes.
Much of these metadata can be used as labels in ML analysis or for other studies.
The dataset, assembled in HDF5 format,
is available at http://doi.org/10.13127/instance (Michelini et al., 2021).
Funder
Horizon 2020 Istituto Nazionale di Geofisica e Vulcanologia
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference92 articles.
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a 2. Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid
method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019,
2011. a 3. Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross
correlations, J. Geophys. Res., 114, B08310,
https://doi.org/10.1029/2008JB006085, 2009. a 4. Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a 5. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res.
Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|