Ground-based vertical profile observations of atmospheric composition on the Tibetan Plateau (2017–2019)
-
Published:2021-10-26
Issue:10
Volume:13
Page:4897-4912
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Xing Chengzhi, Liu ChengORCID, Wu Hongyu, Lin Jinan, Wang Fan, Wang Shuntian, Gao MengORCID
Abstract
Abstract. The Tibetan Plateau (TP) plays an essential role in modulating regional and
global climate, and its influence on climate is also affected by human-related processes, including changes in atmospheric composition.
However, observations of atmospheric composition, especially vertical
profile observations, remain sparse and rare on the TP, due to extremely
high altitude, topographical heterogeneity and the grinding environment.
Accordingly, the forcing and feedback of atmospheric composition from
rapidly changing surrounding regions to regional environmental and climate
change in the TP remains poorly understood. This paper introduces a high-time-resolution (∼15 min) vertical profile observational dataset of atmospheric composition (aerosols, NO2, HCHO and HONO) on the TP for more than 1 year (2017–2019) using a passive remote sensing technique. The diurnal pattern, vertical distribution and seasonal variations of these pollutants are documented here in detail. The sharing of this dataset would benefit the scientific community in exploring source–receptor relationships and the forcing and feedback of atmospheric composition on the TP to the regional and global climate. It also provides potential to improve satellite retrievals and to facilitate the development and improvement of models in cold regions. The dataset is freely available at Zenodo (https://doi.org/10.5281/zenodo.5336460; Xing, 2021).
Funder
National Natural Science Foundation of China National Key Research and Development Program of China Major Science and Technology Projects in Anhui Province
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference103 articles.
1. Aliwell, S. R., Van Roozendael, M., Johnston, P. V., Richter, A., Wagner, T.,
Arlander, D. W., Burrows, J. P., Fish, D. J., Jones, R. L., Tørnkvist, K.
K., Lambert, J. C., Pfeilsticker, K., and Pundt, I.: Analysis for BrO in
zenith-sky spectra: an intercomparison exercise for analysis improvement, J.
Geophys. Res., 107, ACH 10-1–ACH 10-20, https://doi.org/10.1029/2001JD000329, 2002. 2. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, 2005. 3. Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The State and Fate of Himalayan Glaciers, Science, 336, 310–314, 2012. 4. Bolin, B.: On the influence of the earth's orography on the general character of the westerlies, Tellus, 2, 184–195, https://doi.org/10.1111/j.2153-3490.1950.tb00330.x, 1950. 5. Boos, W. R. and Kuang, Z.: Dominant control of the South Asian monsoon by
orographic insulation versus plateau heating, Nature, 463, 218–222, 2010.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|