Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai

Author:

Wang XinningORCID,Shen Yin,Lin Yanfen,Pan Jun,Zhang Yan,Louie Peter K. K.,Li Mei,Fu QingyanORCID

Abstract

Abstract. Growing shipping activities in port areas have generated negative impacts on climate, air quality and human health. To better evaluate the environmental impact of ship emissions, an experimental characterization of air pollution from ships was conducted in Shanghai Port in the summer of 2016. The ambient concentrations of gaseous NO, NO2, SO2 and O3 in addition to fine particulate matter concentrations (PM2.5), particle size distributions and the chemical composition of individual particles from ship emission were continuously monitored for 3 months. Ship emission plumes were visible at the port site in terms of clear peaks in the gaseous species and particulate matter concentrations. The SO2 and vanadium particle numbers were found to correlate best with ship emissions in Shanghai Port. Single-particle data showed that ship emission particles at the port site mainly concentrated in a smaller size range (<0.4 µm), where their number contributions were more important than their mass contributions to ambient particulate matter. The composition of ship emission particles at the port site suggested that they were mostly freshly emitted particles: their mass spectra were dominated by peaks of sulfate, elemental carbon (EC), and trace metals such as V, Ni, Fe and Ca, in addition to displaying very low nitrate signals. The gaseous NOx composition in some cases of plumes showed evidence of atmospheric transformation by ambient O3, which subsequently resulted in O3 depletion in the area. Quantitative estimations in this study showed that ship emissions contributed 36.4 % to SO2, 0.7 % to NO, 5.1 % to NO2, −0.9 % to O3, 5.9 % to PM2.5 and 49.5 % to vanadium particles in the port region if land-based emissions were included, and 57.2 % to SO2, 71.9 % to NO, 30.4 % to NO2, −16.6 % to O3, 27.6 % to PM2.5 and 77.0 % to vanadium particles if land-based emissions were excluded.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference40 articles.

1. Alföldy, B., Lööv, J. B., Lagler, F., Mellqvist, J., Berg, N., Beecken, J., Weststrate, H., Duyzer, J., Bencs, L., Horemans, B., Cavalli, F., Putaud, J.-P., Janssens-Maenhout, G., Csordás, A. P., Van Grieken, R., Borowiak, A., and Hjorth, J.: Measurements of air pollution emission factors for marine transportation in SECA, Atmos. Meas. Tech., 6, 1777–1791, https://doi.org/10.5194/amt-6-1777-2013, 2013.

2. Ault, A. P., Moore, M. J., Furutani, H., and Prather, K. A.: Impact of Emissions from the Los Angeles Port Region on San Diego Air Quality during Regional Transport Events, Environ. Sci. Technol., 43, 3500–3506, https://doi.org/10.1021/es8018918, 2009.

3. Ault, A. P., Gaston, C. J., Wang, Y., Dominguez, G., Thiemens, M. H., and Prather, K. A.: Characterization of the Single Particle Mixing State of Individual Ship Plume Events Measured at the Port of Los Angeles, Environ. Sci. Technol., 44, 1954–1961, https://doi.org/10.1021/es902985h, 2010.

4. Becagli, S., Sferlazzo, D. M., Pace, G., di Sarra, A., Bommarito, C., Calzolai, G., Ghedini, C., Lucarelli, F., Meloni, D., Monteleone, F., Severi, M., Traversi, R., and Udisti, R.: Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean, Atmos. Chem. Phys., 12, 3479–3492, https://doi.org/10.5194/acp-12-3479-2012, 2012.

5. Buffaloe, G. M., Lack, D. A., Williams, E. J., Coffman, D., Hayden, K. L., Lerner, B. M., Li, S.-M., Nuaaman, I., Massoli, P., Onasch, T. B., Quinn, P. K., and Cappa, C. D.: Black carbon emissions from in-use ships: a California regional assessment, Atmos. Chem. Phys., 14, 1881–1896, https://doi.org/10.5194/acp-14-1881-2014, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3