A glacial systems model configured for large ensemble analysis of Antarctic deglaciation
-
Published:2013-12-19
Issue:6
Volume:7
Page:1949-1970
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Briggs R.,Pollard D.,Tarasov L.
Abstract
Abstract. This article describes the Memorial University of Newfoundland/Penn State University (MUN/PSU) glacial systems model (GSM) that has been developed specifically for large-ensemble data-constrained analysis of past Antarctic Ice Sheet evolution. Our approach emphasizes the introduction of a large set of model parameters to explicitly account for the uncertainties inherent in the modelling of such a complex system. At the core of the GSM is a 3-D thermo-mechanically coupled ice sheet model that solves both the shallow ice and shallow shelf approximations. This enables the different stress regimes of ice sheet, ice shelves, and ice streams to be represented. The grounding line is modelled through an analytical sub-grid flux parameterization. To this dynamical core the following have been added: a heavily parameterized basal drag component; a visco-elastic isostatic adjustment solver; a diverse set of climate forcings (to remove any reliance on any single method); tidewater and ice shelf calving functionality; and a new physically motivated, empirically-derived sub-ice-shelf melt (SSM) component. To assess the accuracy of the latter, we compare predicted SSM values against a compilation of published observations. Within parametric and observational uncertainties, computed SSM for the present-day ice sheet is in accord with observations for all but the Filchner ice shelf. The GSM has 31 ensemble parameters that are varied to account (in part) for the uncertainty in the ice physics, the climate forcing, and the ice–ocean interaction. We document the parameters and parametric sensitivity of the model to motivate the choice of ensemble parameters in a quest to approximately bound reality (within the limits of 31 parameters).
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference81 articles.
1. Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R., and Levermann, A.: Parameterization for subgrid-scale motion of ice-shelf calving fronts, The Cryosphere, 5, 35–44, https://doi.org/10.5194/tc-5-35-2011, 2011. 2. Alley, R. B. and Whillans, I. M.: Response of the East Antarctica Ice Sheet to Sea-Level Rise, J. Geophys. Res., 89, 6487–6493, https://doi.org/10.1029/JC089iC04p06487, 1984. 3. Alley, R. B., Horgan, H. J., Joughin, I., Cuffey, K. M., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., and Bassis, J.: A Simple Law for Ice-Shelf Calving, Science, 322, 1344, https://doi.org/10.1126/science.1162543, 2008. 4. Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving models, J. Glaciol., 56, 822–830, https://doi.org/10.3189/002214310794457173, 2010. 5. Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|