The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand

Author:

Tarling Matthew S.ORCID,Smith Steven A. F.ORCID,Scott James M.,Rooney Jeremy S.,Viti Cecilia,Gordon Keith C.

Abstract

Abstract. Deciphering the internal structure and composition of large serpentinite-dominated shear zones will lead to an improved understanding of the rheology of the lithosphere in a range of tectonic settings. The Livingstone Fault in New Zealand is a terrane-bounding structure that separates the basal portions (peridotite; serpentinised peridotite; metagabbros) of the Dun Mountain Ophiolite Belt from the quartzofeldspathic schists of the Caples and Aspiring Terrane. Field and microstructural observations from 11 localities along a strike length of ca. 140 km show that the Livingstone Fault is a steeply dipping, serpentinite-dominated shear zone tens of metres to several hundred metres wide. The bulk shear zone has a pervasive scaly fabric that wraps around fractured and faulted pods of massive serpentinite, rodingite and partially metasomatised quartzofeldspathic schist up to a few tens of metres long. S–C fabrics and lineations in the shear zone consistently indicate a steep east-side-up shear sense, with significant local dispersion in kinematics where the shear zone fabrics wrap around pods. The scaly fabric is dominated (>98 % vol) by fine-grained (≪10 µm) fibrous chrysotile and lizardite–polygonal serpentine, but infrequent (<1 % vol) lenticular relicts of antigorite are also preserved. Dissolution seams and foliation surfaces enriched in magnetite, as well as the widespread growth of fibrous chrysotile in veins and around porphyroclasts, suggest that bulk shear zone deformation involved pressure–solution. Syn-kinematic metasomatic reactions occurred along all boundaries between serpentinite, schist and rodingite, forming multigenerational networks of nephritic tremolite veins that are interpreted to have caused reaction hardening within metasomatised portions of the shear zone. We propose a conceptual model for plate-boundary-scale serpentinite shear zones which involves bulk-distributed deformation by pressure–solution creep, accompanied by a range of physical (e.g. faulting in pods and wall rocks; smearing of magnetite along fault surfaces) or chemical (e.g. metasomatism) processes that result in localised brittle deformation within creeping shear zone segments.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3