Study of Supervisory Control Implementation in A Small Scale Variable Speed Wind Turbine

Author:

Indriawati Katherin,Musyafa Ali,Widjiantoro Bambang L.,Milatul Ummah Anna

Abstract

In relation to improve wind energy production, efforts to increase the extraction of wind energy should be done when there is a decrease in wind power. The decline occurs when there is a change in wind speed. At low wind speed operating range, such as in Indonesia, the controller optimizes power extraction through wind turbine rotor regulation following optimal rotor speed. This study proposed the use of the PI control system as an intelligent control system to solve nonlinearity problem and the setpoint adjustment mechanism to get at the problem of the uncontrolled stochastic driving force input. The PI control is called as a regulatory control while setpoint adjustment is known as one mechanism in supervisory level. Thus, that control system is called as the supervisory control. This control had a task to maximize output power of a wind turbine. The technique was applied to a small scale horizontal axis wind turbine operating in wind speed range of 3-11 m/s. The applied optimization algorithm generated an optimum set-point simultaneously when there was a change of wind speed.

Publisher

EDP Sciences

Reference9 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of speed sensorless supervisory control for maximum power extraction at wind turbine system;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

2. Interface modeling algorithms for dispatch control;IOP Conference Series: Earth and Environmental Science;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3