Advanced high-strength steels for automotive engineering

Author:

Iurchenko Aleksandr,Simonov Iurii

Abstract

Diagrams of supercooled austenite decomposition are constructed for new steels of the Kh2G2C2MF alloying system. They provide the application of a science-based approach to the development and improvement of technological heat treatment processes with the use of furnaces with oxidising atmosphere. It is shown that the bainite transformation cannot exist separately from the martensite transformation even at slow cooling speeds. Regimes of heat treatment are selected, providing a possibility to receive the necessary structure for formation of a required complex of mechanical properties in a wide range. It is established that the most perspective heat treatment regime scheme from the point of view of time savings is continuous cooling from the heating temperature. It is revealed that the main structural components of steels after various heat treatment regimes are bainite and martensite, whose ratio determines the mechanical characteristics. Bainite is carbide-free, which favourably influences the complex of mechanical characteristics. The excessive ferrite and ferrite-carbide mixture formed in the structure at slow rates of continuous cooling in the upper temperature range do not affect the mechanical properties since their amount is insignificant. It is established that new economically alloyed steels with chromium, manganese, silicon, molybdenum, vanadium, and different carbon content belong to third-generation automotive steels, which gives prospects of using this material for manufacturing various automotive parts to improve the entire structure.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3