Adaptive Method for Estimating Traffic Characteristics in Corporate Multi-Service Communication Networks for Transport Companies

Author:

Ageev Sergey,Karetnikov Vladimir,Ageeva Nina,Bulanets Artem

Abstract

An adaptive method for estimation the traffic characteristics in high-speed corporate multiservice networks based on the methods of preliminary indistinct computer training, functioning in real time mode, is proposed and investigated in this paper. The relevance of the study is due to the fact that many processes of network management in high-speed corporate multiservice communication networks need to be implemented in a mode close to real time. The approach proposed in the paper is based on the concept of conditional nonlinear Pareto-optimal filtering V. C. Pugachev. The essence of this approach consists in the fact that estimation of the traffic parameter is performed in two stages - on the first stage the parameter value prediction is estimated, and on the second stage, when the next parameter observations are received, the parameter values are corrected. In the proposed method and algorithm, predictions of traffic parameter values are made in a small sliding window, and adaptation is implemented based on pseudo-gradient procedures whose parameters are adjusted using the Takagi-Sugeno indistinct logic inference method. The proposed method and algorithm belong to the class of adaptive methods and algorithms with prior learning. The average relative error of the estimated traffic parameters estimation does not exceed 8.2%, which is a sufficient value for the implementation of operational network management tasks.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3