Author:
Penda Ravi Prasad,I V Ramana Reddy
Abstract
Slurry Infiltrated Fibrous Concrete (SIFCON), a modified version of Fiber Reinforced Concrete (FRC), addresses the challenge of increased fiber volume fractions. Commercially produced steel fibers are typically used in FRC and SIFCON. Efforts to reduce energy use in making commercial steel fibers have led to seeking alternative sources. Vehicular tires are typically recycled when no longer usable, yielding steel fibers among the products. Emphasis lies in recovering steel fibers from used tires as part of resource recovery from waste. Experimental work explored flexural strength in SIFCON with waste steel fibers at volumes from 4% to 7%. The study extended to assess SIFCON’s flexural strength with commercial steel fibers at similar volumes, aiming to correlate with those from waste steel fibers. M20 grade concrete and SIFCON slurry matrix specimens were cast as reference mixes for comparison. The flexural strength of SIFCON specimens with waste steel fibers recovered from used tires notably surpasses that of reference mixes and is comparable to SIFCON specimens with commercial steel fibers. Additionally, the two-layer technique proves effective in SIFCON using waste steel fibers from used tires, up to 6% volume. The test results show successful production of SIFCON from waste steel fibers recovered from used tires.
Reference29 articles.
1. Secretariat of the Basel Convention, revised technical guidelines for the environmentally sound management of used and waste pneumatic tyres, Basel Convention (2011)
2. Commission European, Directive Council 1999/31/EC of 26 April 1999 on the landfill of waste, Official Journal of the European Union (1999)
3. New York State, Waste Tire Management and Recycling Act of 2003, New York (2003)
4. Experimental Investigation on Performance of Waste Cement Sludge and Silica Fume-Incorporated Portland Cement Concrete