Machine Learning Techniques for the Design and Optimization of Polymer Composites: A Review

Author:

Maniraj J.,Arockiasamy Felix Sahayaraj,Kumar C. Ram,Kumar D. Ashok,Jenish I.,Suyambulingam Indran,Rangappa Sanjay Mavinkere,Siengchin Suchart

Abstract

Polymer composites are employed in a variety of applications due to their distinctive characteristics. Nevertheless, designing and optimizing these materials can be a lengthy and resourceintensive process for low cost and sustainable materials. Machine learning has the potential to simplify this process by offering predictions of the characteristics of novel composite materials based on their microstructures. This review outlines machine learning techniques and highlights the potential of machine learning to improve the design and optimization of polymer composites. This review also examines the difficulties and restrictions of utilizing machine learning in this context and offers insights into potential future research paths in this field.

Publisher

EDP Sciences

Subject

General Medicine

Reference38 articles.

1. Current status of carbon fibre and carbon fibre composites recycling

2. Mouritz A.P., Introduction to aerospace materials, Elsevier, (2012)

3. Carus M., Eder A., Dammer L., Korte H., Scholz L., Essel R., Barth M., Wood-plastic composites (WPC) and natural fibre composites (NFC), Nova-Institute: Hürth, Germany, 16 (2015)

4. Disrupting 3D printing of medicines with machine learning

5. Progress Report on Natural Fiber Reinforced Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3