Influence of supplementary cementitious materials in the concrete’s compressive strength through artificial neural network

Author:

Ongpeng Jason Maximino,Clemente Spiro Jensen,Ong Carl Gavin,Te Dustin Dominic,Tecson Jerson Vincent,Roxas Cheryl Lyne

Abstract

Supplementary cementitious materials have been proven to be effective partial cement replacements in concrete to reduce greenhouse gas emissions from the use of ordinary Portland cement. In this study, artificial neural network was used to arrive at a predictive model to assess their effects in the compressive strength of concrete. Collection of 991 datasets from published literatures was done for the development of the best network model with acceptable root mean square error for both training and testing datasets. The supplementary cementitious materials were ranked accordingly using the improved stepwise method and network simulation. From the results, ground granulated blast-furnace slag with 15% cement replacement and silica fume with 30% cement replacement contributed to the highest increase in compressive strength.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3