Advancing Aluminum-Based Composites with Fly Ash and SiC Reinforcement through Stir Casting

Author:

Salam Abood Ahmed,P K Jisha,Karuna G.,Jain Alok,Goel Radha,Kumar Chandra Pradeep

Abstract

This study explores the advancement of aluminum-based composites through the integration of fly ash and silicon carbide (SiC) reinforcement via stir casting. The process involves melting the alloy in a crucible within a muffle furnace at 700°C, gradually introducing fly ash and SiC particles while stirring at 450 rpm for 12 minutes to ensure uniform dispersion. The addition of 5% SiC and 2.5% fly ash led to significant improvements in multiple mechanical properties.Tensile strength experienced a remarkable enhancement of approximately 19.56%, while hardness showcased a substantial increase of about 34.67%. Furthermore, fatigue strength demonstrated a notable improvement of approximately 26.87%, and wear resistance exhibited a significant enhancement of approximately 31.45%. These enhancements underscore the efficacy of integrating fly ash and SiC reinforcement, highlighting the potential for advanced aluminum composites with superior mechanical properties. This approach presents a promising avenue for enhancing material performance, with implications for diverse industrial applications requiring durability, strength, and wear resistance.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing The Power of Artificial Intelligence for Disaster Response and Crisis Management;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3