A New Maximum Power Point Tracking Based on Neural Networks and Incremental Conductance for Wind Energy Conversion System

Author:

El aissaoui Hayat,El ougli Abdelghani,Tidhaf Belkassem

Abstract

This work presents a new Maximum Power Point Tracking (MPPT) for the connection of the wind turbine system (WT) to the synchronous permanent magnet generator (PMSG). To search the maximum power of the wind turbine, we have proposed a new MPPT which combines two techniques: Artificial Neural Network (ANN) and incremental conductance (IncCond) method. The advantage of ANN-based WT model method is the fast MPP approximation base on the ability of ANN according the parameters of WT that used. The advantage of IncCond method is the ability to search the exactly MPP based on the feedback voltage. In our case the ANN is employed to predict the maximum voltage of the WT, under different values of wind speed, and the control of DC–DC boost converter operation is executed by applying incremental conductance (IncCond) technique. The proposed system includes a wind turbine associated to a permanent magnet synchronous generator (PMSG), a rectifier and a DC-DC converter with MPPT control. The proposed algorithm is tested under MATLAB SIMULINK.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3