Monitoring of Radiation Fields in Near Earth Space and Atmosphere in New Space Projects of Moscow University

Author:

Svertilov Sergey,Bengin Viktor,Bogomolov Vitaly,Garipov Gali,Dobynde Mikhail,Zolotarev Ivan,Кalegaev Vladimir,Кlimov Pavel,Osedlo Vladislav,Panasyuk Mikhail,Peretjat’ko Oleg,Petrov Vasily,Podzolko Mikhail

Abstract

The Universat-SOCRAT project is developed in the Moscow State University aiming to forecast space-related risks for aviation, suborbital, and orbital flights and provide new knowledge on the magnetosphere and atmosphere of the Earth. An essential part of the system is a multi-satellite constellation, which would operate in the low-Earth orbit. Among other things, it would monitor the radiation and magnetic-wave environment in the vicinity of the Earth: in space and atmosphere. An Earth observation system, which operates in gamma and visible spectral range, should allow attribute detected changes in the environment to the atmospheric phenomena. We have already designed the instruments to detect increases in the flux of energetic charged particles (solar energetic particles, galactic cosmic rays, and electrons precipitating from radiation belts), geomagnetic disturbances, and electromagnetic transients in the atmosphere. The first stage of the program started on July 5, 2019, with a successful launch of three 3U CubeSats from the Vostochny cosmodrome. These satellites carry instruments for monitoring space radiation and prototype of the device for observing the Earth’s atmosphere in the ultraviolet range. The collected data has confirmed the advantages of multi-satellite observations for the goals of the project. During this year, we plan to launch two more 6U CubeSats with charged particle and gamma-ray detectors, magnetometers, and instrument for detecting of atmospheric electromagnetic transients. We suppose that these satellites will lay the foundation of the space threat monitoring system.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3