Port Energy Supply Through An LNG-Powered Integrated Grid

Author:

Borelli Davide,Devia Francesco,Schenone Corrado,Silenzi Federico,Tagliafico Luca

Abstract

Ports are primary importance infrastructures when considering the transportation of people and goods across the planet. Two of the biggest issues linked to harbor areas are the pollutant emissions from moored ships, as well as the huge energy demand coming from ships and other activities that take place inside of the port boundaries. To tackle these challenges, the effort on the ship-side is to promote the transition to Liquefied Natural Gas (LNG) propulsion, while on the harbor-side is to implement electrical ship feeding. In general, using LNG for bunkering purposes implies its storage onshore using dedicated tanks. The regasification of LNG in situ can be exploited to cool down a water-brine flow (i.e. ethyl-alcohol and water). The cold brine can be used to increase the efficiency of a standard inverse cycle to produce cold (i.e. -30°C) used for refrigeration purposes inside ports. Then, the NG flow can be used to produce electrical energy with a standard turbogas cycle with energy recovery from flue gases. The generated electricity directly runs the standard inverse cycle with ethyl-alcohol and water brine to completely fulfill the energy demand for cold thermal power. The electricity still available is then used to supply the onboard systems of moored ships, or otherwise is sold to the users operating in the port. The flue gas coming from the turbogas plant can be used to provide both heating and process heat, through a dedicated heat exchanger and a natural gas boiler. The new envisaged plant can exploit all possible useful effects coming from the regasification process, helping to push towards a greener energy management system in harbor areas, through smart operative integration of the several available energy systems and the implementation of efficient energy smart grids.

Publisher

EDP Sciences

Reference19 articles.

1. “The Role of Gas in Today’s Energy Transitions – Analysis IEA.” [Online]. Available: https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions. [Accessed: 10-May-2020].

2. Union I. G., “The World LNG Report,” Barcelona, 2020.

3. Exergy recovery during LNG regasification: Electric energy production – Part one

4. Liquefied natural gas submerged combustion vaporization facilities: process integration with power conversion units

5. Optimization and comparative analysis of LNG regasification processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3