Uncertainty Characterization for Soil Cohesion in a Project Site in Nasiriyah Using Bayesian Methods

Author:

Abd Al-Haleem Zainab,Shakir Ressol R.

Abstract

High uncertainties arias through the characterization of soil parameters because of the lack of data obtained from geotechnical reports. Reducing these uncertainties may improve the characteristic values of soil parameters. This research aims to probabilistically characterize a soil's cohesion parameter in Nasiriyah. The Bayesian approach has been applied to soil data obtained through a project in Nasiriyah. The soil at the site is classified as lean clay, and the soil cohesion has been evaluated using two Bayesian methods: the ordinary, normal distribution method (OND) and the Marcove Chain Monte Carlo-based Bayesian approach (MCMC) method. The previous knowledge utilized in the Bayesian approach was based on 20 boreholes, and the subjective probability approach has functioned in the prior probability distribution. The OND method deduced a mean value of cohesion of (195.9 kPa) and a standard deviation of (14.68 kPa), (COV) 7.49%. It was noted that the probability distribution has a more significant effect than the previous distribution on the posterior distribution. The MCMC method summarized the probabilistic description of the soil characteristic, through which it reached the mean and the subsequent standard deviation (167.49) kPa (109.8) kPa, respectively, and the coefficient of Variation (COV) was 65.6%. It is considered the most appropriate and common method, especially in high-dimensional data when the results are not well known because it can provide a probabilistic value for the not well-known data.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3