A Comparative Analysis of Machine Learning Algorithms for Aggregated Electric Chargepoint Load Forecasting

Author:

Li Chang,Zhang Miao,Förderer Kevin,Matthes Jörg,Hagenmeyer Veit

Abstract

With the development of electric vehicles in the last years, the number of electric chargepoints are expanding rapidly. Accordingly, the aggregated load demand from different electric chargepoints is increasing significantly. Due to the unpredictability of charging behaviour, it is difficult to build white-box models to analyse the patterns and to predict the load profiles, which is essential for other tasks such as demand side management. Thus, in this work, four different models based on machine learning and deep learning algorithms namely Random Forest (RF), Support Vector Regression (SVR), Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) are applied to a massive real-world open dataset from the UK, published in 2018, to compare the forecast performance of each algorithm with the modified persistence model as the baseline. The raw data are first pre-processed to generate the aggregated load demand by hour and then used for training and forecasting with a predictive horizon of 72 hours. The results are compared by using two common descriptive statistics, i.e., normalized Root-Mean-Square Error (nRMSE) and Mean Absolute Percentage Error (MAPE). In comparison we find that the GRU generates the lowest prediction error with 5.12% MAPE and 8.24% nRMSE in January 2017 and the modified persistence model generates the overall lowest prediction error with 2.88% MAPE and 3.76% nRMSE in July 2017.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3