Assessment and mapping of water erosion by the integration of the Gavrilovic “EPM” model in the Inaouene watershed, Morocco

Author:

Marouane Laaraj,Lahcen Benaabidate,Valérie Mesnage

Abstract

Water erosion is one of the main causes of soil degradation around the world. In M orocco, In M orocco, the watersheds have very significant soil wastes, related to various physical and anthropic factors. The Oued Inaouene watershed is concerned because of its location in the eastern part of the Saïss basin, between the Middle Atlas and the Pre-Rif, where water erosion is more accentuated. This basin covers a total area of 3597.13 Km2 and it is marked by a semi-arid climate with relatively abundant (989.68 mm), irregular rainfall and strong anthropic pressure. This will have an impact of overexploiting natural resources in general and soils in particular. The excessive use of agricultural land has led to their fragility and aggravation of their susceptibility to erosion. These conditions, both natural and anthropic, have induced a rather intense erosive dynamic, which can be visible in its various forms, including gullying and landslides. The erosive dynamics leads progressively and certainly to impoverish the soils of the watershed and the silting of the dam Idris 1st located downstream of the Oued Inaouene, hence the interest of this study. The use of the “EPM” model for the estimation of soil losses approaches the severity of the erosive phenomenon. The average soil loss due to water erosion according to the model used is estimated at 53.34 t/ha/year. The maximum losses are about 597.642 t/ha/yr per plot. Total annual losses for the watershed are approximately 211084195 t/yr. Furthermore, the analysis of these results allowed, with the help of GIS, to determine the factors that control water erosion and which are, in order of importance: rainfall, slope, and soil sensitivity Soil protection. If anti-erosion measures aren’t adopted in the threatened parts of the watershed, this will have serious consequences for the dam and water quality .

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3