Real-time aTmega microcontroller-based simulator enabled hardware-in-the-Loop for fuzzy control dual-sources HESS

Author:

Jbari Hatim,Askour Rachid,Idrissi Badr Bououlid

Abstract

In this paper, a real-time simulation of a hybrid energy storage system (HESS), using a hardwarein- the-loop (HIL) platform is proposed. The HESS is in a semi-active configuration including Supercapacitors (SC) controlled by a chopper and a Li-ion battery. The model organization was performed using Energetic Macroscopic Representation (EMR). The energy flow management is provided by an energy management strategy (EMS) based on fuzzy logic controller (FLC), developed in C language for ARDUINO and uploaded into the aTmega microcontroller. The main objective of this work, is to evaluate, on the one hand the performances of the proposed architecture, by reducing the factors that impact the battery performances. On the other hand, the program and the platform (HIL) developed, through the comparison of results with those of the simulation, performed on MATLAB/SIMULINK under ECE-15 cycle.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3