Numerical simulation on aerosol pool scrubbing

Author:

Peng Cheng,Li Dong,Wang Chengyao,Lei Qinggang

Abstract

In the event of severe accident for nuclear power plant (NPP), radioactive aerosols may be released into spent fuel pool (SFP) through filtered-containment-venting-system (FCVS), which are entrained by mixing gas from containment, in order to prevent the overpressure of containment. The efficiency of aerosol pool scrubbing determines the radioactive threats of spent fuel compartment induced by containment venting, and the probable amount of radioactive substance during atmospheric dispersion later on. Therefore, it is necessary to study the typical flow phenomena during the process of aerosol pool scrubbing in the SFP of PWR nuclear power plants, and figure out the important regularities and mechanisms, which can provide reference for evaluations of radioactive threats of spent fuel compartment and provide technical supports for new type of designs for SFP and venting system. In this paper, Fluent is used to establish two kinds of numerical models of SFP, including horizontal injection and vertically downward injection configurations, according to the geometrical dimensions of Qinshan 2 NPP’s SFP. TiO2 is used as the substitute of radioactive substance and coupled numerical models of VOF and DPM are introduced for qualitative and quantitative studies on the effects of diameter of aerosol particle, injection velocity, initial water depth and injection direction. The decontamination factor (DF) is determined by quantifying the mass concentration of aerosol particles which escape and are traced from the SFP under different conditions, respectively. Based on the simulation results, it can be seen that with the increase of particle diameter, DF is going to decrease at first and then increase. There should be a negative correlation between injection velocity and DF. By contrast, there is a positive association between initial water depth and DF. Besides, DFs under vertically downward injection conditions are much lower than that under horizontal injection, due to the appearance of contra-vortex flow adjacent to the free water surface.

Publisher

EDP Sciences

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3