Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development

Author:

Pysmennyi Serhii,Fedko Mykhailo,Shvaher Nataliia,Chukharev Serhii

Abstract

The purpose of research is to increase the ore mass extraction ratio when mining rich iron ores by changing the shape of the stope chamber, as well as to substantiate its stable parameters under the conditions of the rock pressure manifestation. Used in mines existing methodologies for determining the structural elements of mining system are based on calculated equivalent spans of outcropping the stope chambers, which have a rectangular or tent shape. For the first time using the ANSYS software package, it has been determined that the formation of a compensation chamber of quasi-parabolic shape can significantly reduce the stresses concentration around the stope block. Thus, the formation of a stope chamber of a quasi-parabolic shape makes it possible to reduce vertical stresses as compared to horizontal ones without increasing horizontal pressure. When mining the extraction block, it is proposed to form the stope chamber of a quasi-parabolic shape with geometric parameters that directly depend on the parameters of the deposit, the depth of mining, and the direction of main stresses action. Dependences have been determined of the stresses value on the depth of mining and the physical properties of rocks, as well as on the length along the strike of the ore deposit. Thus, depending on the mining depth and length along the strike, rock pressure on the stope chamber of a quasi-parabolic shape decreases under non-uniform loading. The formation of a stope chamber of a quasi-parabolic shape will increase by 1.2 – 1.5 times the volume of pure ore that is recovered from the block.

Publisher

EDP Sciences

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3