Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model

Author:

Gao-peng Wang,Zhen-yu Yan,Hai-peng Zhai,Rui-ji Zheng

Abstract

The stability of blast furnace temperature is an important condition to ensure the efficient production of hot metal. Accurate prediction of silicon content in hot metal is of great significance to the control of blast furnace temperature in iron and steel plants. At present, the accuracy of most silicon prediction models can only be guaranteed when the furnace condition is stable. However, due to many factors affecting the silicon content in hot metal of blast furnace, and there are large noises, large delays and large fluctuations in the data, the previous prediction results are of limited guiding significance to the actual production. In this paper, combined with the actual situation, the convolution neural network is used to extract the furnace condition characteristics, and then combined with the attention mechanism and the IndRNN model to get the prediction results, so that the prediction can better adapt to the fluctuating data set. The experimental results show that the prediction error of this model is lower than that of other models, which provides a new solution for the research of silicon content in hot metal of blast furnace.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven soft sensors in blast furnace ironmaking: a survey;Frontiers of Information Technology & Electronic Engineering;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3