Influence of the length parameter of an underground oil pipeline on the frequency of free oscillation

Author:

Vladimir Sokolov,Razov Igor`,Dmitriev Andrey

Abstract

The problem of finding the natural frequencies of thin-walled underground oil pipelines is solved, based on the application of a semi-momentless theory of cylindrical shells of medium bending, in which bending moments in the longitudinal direction are not taken into account in view of their smallness compared with moments acting in the transverse direction. The solution to this approach is a fourth-order homogeneous differential equation satisfying the boundary conditions of articulation at each end. This equation includes the parameters of the length, internal pressure, thinness of the pipeline, as well as the values of the coefficient of elastic resistance of the soil, the attached mass of the soil and the attached mass of the flowing oil. Based on the data obtained by the derived formulas, the frequency characteristics of large-diameter thin-walled underground oil pipelines are determined depending on the length of the element, as well as on the soil conditions. It has been established that the minimum frequencies are realized for shell modes of vibration with a length parameter of the pipeline section (the ratio of the length of the section to the radius) not exceeding 13. A formula is derived that allows one to determine the boundary between the use of the rod and shell theory for calculating pipelines for dynamic effects. Using the dynamic stability criterion, in which the frequency of natural oscillations vanishes, expressions are derived that allow one to determine the external critical pressure on the wall of the pipeline, which takes into account the length of the pipeline, as well as the number of half waves in the transverse and longitudinal directions, in which the pipeline goes into emergency condition.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3