Author:
Smajlovic I.,Wang D.,Túri M.,Qiding Z.,Futó I.,Veres M.,Sparks K.L.,Sparks J.P.,Jakšić D.,Vuković A.,Vujadinović M.
Abstract
In early 1990's European Union has established new isotopic approach for detection of wine authenticity. In this article we setup the possibility of using new approach using new EIM – Module – IRMS (Ethanol Isotope Measurement – Module – Isotope Ratio Mass Spectrometry) instrumental technique and new analytical parameter δDn(δ2Hn) wine ethanol value, which represents δ2H value of non-exchangeable hydrogen stable isotope ratio in ethanol, with other isotopic species (δ18O values in wine water) to improve detection of illegal wine production practices such as addition of sugar and/or dilution with water. Total of 42 wine samples were analyzed. 10 wine samples (out of 42) were prepared from grapes by alcoholic fermentation and analyzed for δDn values of ethanol. 19 wine samples (out of 42) were collected from wine producers in Serbia plus 1 wine samples designated from United States was taken from Serbian market and analyzed for δDn values of ethanol, δ18O values in wine water and also δ13C values in wine ethanol. Furthermore 9 wine samples (out of 42) were taken from Hungarian market and analyzed for δDn values of ethanol, and also 3 wine samples (out of 42) were taken from Austrian market and analyzed for δDn values of ethanol. All experiments were done in 4 isotope laboratories located in US, Austria, Hungary and People's Republic of China. δDn values of ethanol were measured by using EIM Module connected to FlashHT 2000 pyrolizer (one laboratory – Imprint Analytics GmbH, Austria), while in other 3 laboratories (US – COIL – Cornell University, Stable Isotope Laboratory, Hungary – Isotoptech Ltd, Debrecen, Hungary and China – C.N.R.I.F.F.I. – China National Institute of Food and Fermentation Industries Limited) EIM Module was connected to TC/EA (High Temperature Conversion Elemental Analyzer). Peripherals in all laboratories were further interfaced with isotope ratio mass spectrometer. Furthermore δ18O values in wine water were measured by using Gas Bench II interfaced also with isotope ratio mass spectrometer (one laboratory – US). Obtained results from all 4 laboratories have shown that this new approach which uses δDn in wine ethanol is more effective in improving detection of illegal wine production practices (sugar enrichment and water dilution) and origin of ethanol, and also detecting the addition of corn or beet sugar, sugar syrup to wine, or dilution of grape must with water prior to alcoholic fermentation.
Keywords: Wine authenticity; EIM – Module – IRMS; Stable Isotope; Isotope Ratio Mass Spectrometry; Wine; Watering; Chaptalization.
Reference16 articles.
1. Eurostat statistical books (2015 edition). Agriculture, forestry and fishery statistics. Agricultural products 88, ISSN 2363-2488
2. Meloni G., Swinnen J., The political economy of European wine regulations. LICOS Discussion Paper 320/2012. Version: 17 (2012)
3. Code of Federal Regulations, Title 27 – Alcohol, Tobacco Products and Firearms. Chapter I – Alcohol and tobacco tax and trade bureau, department of the treasury, Subchapter A – alcohol, part 24 – Wine 27 CFR §24.178 and §24.181 (2017)
4. DETERMINATION OF STABLE ISOTOPE RATIOS IN FOOD ANALYSIS
5. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献