Photocatalytic degradation of glyphosate using TiO2/Al2O3/CNT

Author:

Nik Yusoff Nik Raihan,Roslee Aisyah Zahirah,Mohd Ghazi Rozidaini,Jani Musfiroh,Nik Yusoff Nik Nurul Anis

Abstract

Excessive use of glyphosate in agriculture has a negative impact on the environment because it causes runoff, which affects water sources and causes pollution. Advanced Oxidation Process (AOP) is the method for resolving water contamination concerns, and photocatalytic degradation using TiO2/Al2O3/CNT nanocomposites has been observed to be a reliable solution for degrading glyphosate. The photocatalyst of TiO2/Al2O3/CNT nanocomposite was prepared using various ratios which were 70:20:10, 70:29:1 and 70:30:0. These photocatalysts TiO2/Al2O3/CNT were prepared using hydrothermal process. The prepared TiO2/Al2O3/CNT photocatalyst nanocomposite has been applied to degrade glyphosate in order to assess its performance. Hence, the effect of initial glyphosate concentration and amount of photocatalyst used during photocatalytic degradation of glyphosate were investigated. This study found that 20 mg of 70:30:0 ratio TiO2/Al2O3/CNT nanocomposite photocatalyst gave the highest percentage degradation of 5 mg/L of glyphosate which was 84.9%. The lowest degradation percentage for 5 mg/L of glyphosate was 68.2% using the 5 mg of ratio 70:20:10 TiO2/Al2O3/CNT nanocomposite photocatalyst. Finally, the prepared photocatalyst was beneficial in degrading herbicide.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3