Inducing Fungal Pelletization Using Affordable Microparticle

Author:

Al Fa’is Jimmy,Chindyastuti Anisya,Ilmi Miftahul

Abstract

Filamentous fungi have been known as one of the potential microorganisms in various industries. One of the isolates with great potential is Mucor irregularis that offer substantial potential to their growth characteristics. In submerged cultures, these microorganisms often aggregate into mycelia, enabling high-density cultivation and enhanced productivity. M irregularis have a high lipid content of 43.46% and a yield of 3.28 g/L. To further lipid-rich biomass production, pelletization is explored to involve the addition of microparticles like magnesium silicate and calcium carbonate. Microparticles have demonstrated the ability to control growth and enhance biomass in various strains. This study investigates the impact of microparticle addition on M. irregularis biomass production and pellet formation. Preliminary tests reveal that the addition of magnesium silicate microparticles (0, 1, 2, and 3 g/L) induces pellet formation, with the 2 g/L treatment yielding optimal results. Microscopic observations confirm that higher magnesium silicate concentrations result in more compact pellets. Biomass production peaks at 72 hours of incubation, reaching 3.09 ± 0.43 g/L, while the largest pellet diameter of 1.27 mm occurs at 48 hours of incubation. This research offers insights into enhancing biomass production and pellet formation in M. irregularis, holding promise for diverse applications.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3