Author:
Vasyukova A. T.,Kusova I. U.,Belenkov A. I.,Kandrokov R. Kh.,Dyshekova M. M.
Abstract
Determining the degree of grinding of a functional multicomponent mixture of cereals and legumes is an important indicator of the flour-grinding properties of the constituent components of the recipe for the production technology of flour culinary products. The degree of grinding affects the structure of the flour and the uniformity of the crumb products. The selection of grain components of the recipe was carried out on the basis of the amino acid composition of cereals, legumes and spicy aromatic raw materials. A number of grindings of the raw components of the grain mixture were performed: lentils, peas, millet, pearl barley, spelled, oats, coriander, black pepper, or beans, rye, buckwheat, millet, lentils, spelled, pine nut shells, salt, coriander, black pepper and others compositions. The technological parameters of torn and grinding systems are determined and the indicators of the obtained processing components are characterized: flour, dunst and bran. Grinding schemes for five multicomponent grinding mixtures have been developed, including the preparation of basic and intermediate products. In addition to the composite flour obtained on all technological systems, bran was selected on the V tattered system and from the 3rd to the 7th grinding system, as well as hard and soft dunst. The passage from I-V torn systems is the finished product in the form of flour with a particle size of less than 132 microns. After grinding at all 7 stages of grinding systems, bran is obtained. The passage of 1-7 grinding systems produces a finished product in the form of flour from a composite grain mixture with a particle size of less than 132 microns. As a result of grinding and scattering through a sieve of 2500 microns, the following was obtained: for a mixture of 1NS - 3.2%, for a mixture of 2DS-2 - 1.8%, for a mixture of 3VS-2 - 2.0%, for a mixture of 4DS-3 - 1, 0% and for the mixture 5VS-3 - 1.9%, and when scattered through a sieve of 132 microns, it was obtained: for the mixture 1NS - 19.2%, for the mixture 2DS-2 - 18.0%, for the mixture 3VS-2 - 17.4%, for the mixture 4DS-3 - 20.6% and for the mixture 5VS-3 - 19.8%. Investigated multicomponent samples: 4DS-3; 3VS-2; 5VS-3: 2DS-2; 1HC according to the results of expert opinions can be recommended for industrial processing of composite grain mixtures into flour as food additives balanced in amino acid composition. The use of the developed technological scheme of grinding makes it possible to obtain the required granulometric composition of flour used in baking flour culinary products. In the presence of large fractions inside the functional mixture, it leads to inclusions that are clearly reflected in the crumb of buns, which is negatively evaluated by consumers.
Reference21 articles.
1. Vasyukova A. T., Krivoshonok K. V., Akchurina A. I., Bogonosova I. A., Bondarenko Yu.V., Alekseeva A.A., “Development of food products enriched with a complex of dietary supplements for children”, in Process Management and Scientific Developments. Proceedings of the International Conference. Birmingham (2022), pp. 192–199.
2. Ant Z., Preparation of non-traditional raw materials (2012), https://en.baker-group.net/
3. Banton K., Raw Materials: Definition, Accounting, and Direct vs. Indirect (2023), https://www.investopedia.com/terms/r/rawmaterials.asp.
4. INNOVATIVE TRENDS IN THE DEVELOPMENT OF ADVANCED TRITICALE GRAIN PROCESSING TECHNOLOGY