Abstract
A hyperbolic model for diffusion, nonlfnear transport (or advection) and production of a scalar quantity, is considered. The model is based on a constitutive law of Cattaneo-Maxwell type expressing non-Fickian diffusion by means of a relaxation time relation. The production or source term is assumed to be of logistic type. This paper studies the existence and spectral stability properties of spatially periodic traveling wave solutions to this system. It is shown that a family of subcharacteristic periodic waves emerges from a local Hopf bifurcation around a critical value of the wave speed. These waves have bounded fundamental period and small-amplitude. In addition, it is shown that these waves are spectrally unstable as solutions to the hyperbolic system. For that purpose, it is proved that the Floquet spectrum of the linearized operator around a wave can be approximated by a linear operator whose point spectrum intersects the unstable half plane of complex numbers with positive real part.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Programa Universitario de Fenómenos Nolineales y Mecánica-UNAM
Subject
Modeling and Simulation,Applied Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献