Author:
Xiong Chunguang,Luo Fusheng,Ma Xiuling
Abstract
This paper presents error analysis of hybridizable discontinuous Galerkin (HDG) time-domain method for solving time dependent Schrödinger equations. The numerical trace and numerical flux are constructed to preserve the conservative property for the density of the particle described. We prove that there exist the superconvergence properties of the HDG method, which do hold for second-order elliptic problems, uniformly in time for the semidiscretization by the same method of Schrödinger equations provided that enough regularity is satisfied. Thus, if the approximations are piecewise polynomials of degree r, the approximations to the wave function and the flux converge with order r + 1. The suitably chosen projection of the wave function into a space of lower polynomial degree superconverges with order r + 2 for r ≥ 1 uniformly in time. The application of element-by-element postprocessing of the approximate solution which provides an approximation of the potential convergence with order r + 2 for r ≥ 1 in L2 is also uniformly in time.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献