Mathematical modeling of microtubule dynamic instability: new insight into the link between gtp-hydrolysis and microtubule aging

Author:

Barlukova Ayuna,White Diana,Henry Gérard,Honoré Stéphane,Hubert Florence

Abstract

Microtubules (MTs) are protein polymers that exhibit a unique type of behavior referred to as dynamic instability. That is, they undergo periods of growth (through the addition of GTP-tubulin) and shortening (through the subtraction of GDP-tubulin). Shortening events are very fast, where this transition is referred to as a catastrophe. There are many processes that regulate MT dynamic instability, however, recent experiments show that MT dynamics may be highly regulated by a MTs age, where young MTs are less likely to undergo shortening events than older ones. In this paper, we develop a novel modeling approach to describe how the age of a MT affects its dynamic properties. In particular, we extend on a previously developed model that describes MT dynamics, by proposing a new concept for GTP-tubulin hydrolysis (the process by which newly incorporated GTP-tubulin is hydrolyzed to lower energy GDP-tubulin). In particular, we assume that hydrolysis is mainly vectorial, age-dependent and delayed according to the GTP-tubulin incorporation into the MT. Through numerical simulation, we are able to show how MT age affects certain properties that define MT dynamics. For example, simulations illustrate how the aging process leads to an increase in the rate of GTP-tubulin hydrolysis for older MTs, as well as increases in catastrophe frequency. Also, since it has been found that MT dynamic instability is affected by chemotherapy microtubule-targeting agents (MTAs), we highlight the fact that our model can be used to investigate the action of MTAs on MT dynamics by varying certain model parameters.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3