Constraining the accretion flow density profile near Sgr A* using the L′-band emission of the S2 star

Author:

Hosseini S. ElahehORCID,Zajaček MichalORCID,Eckart Andreas,Sabha Nadeen B.,Labadie Lucas

Abstract

Context. The density of the ambient medium around a supermassive black hole (SMBH) and the way it varies with distance plays an important role in our understanding of the inflow-outflow mechanisms in the Galactic centre (GC). This dependence is often fitted by spherical power-law profiles based on observations in the X-ray, infrared (IR), submillimetre (submm), and radio domains. Aims. Nevertheless, the density profile is poorly constrained at the intermediate scales of 1000 Schwarzschild radii (Rs). Here we independently constrain the spherical density profile using the stellar bow shock of the star S2 which orbits the SMBH at the GC with the pericentre distance of 14.4 mas (∼1500 Rs). Methods. Assuming an elliptical orbit, we apply celestial mechanics and the theory of bow shocks that are at ram pressure equilibrium. We analyse the measured IR flux density and magnitudes of S2 in the L′-band (3.8 micron) obtained over seven epochs in the years between 2004–2018. We put an upper limit on the emission from S2’s associated putative bow shock and constrain the density profile of the ambient medium. Results. We detect no significant change in S2 flux density until the recent periapse in May 2018. The intrinsic flux variability of S2 is at the level of 2–3%. Based on the dust-extinction model, the upper limit on the number density at the S2 periapse is ∼1.87  ×  109 cm−3, which yields a density slope of at most 3.20. Using the synchrotron bow-shock emission, we obtain the ambient density of ≲1.01  ×  105 cm−3 and a slope of ≲1.47. These values are consistent with a wide variety of media from hot accretion flows to potentially colder and denser media comparable in properties to broad-line-region clouds. However, a standard thin disc can be excluded at the distance of S2’s pericentre. Conclusions. With the current photometry sensitivity of 0.01 mag, we are not able to make stringent constraints on the density of the ambient medium in the GC using S2-star observations. We can distinguish between hot accretion flows and thin, cold discs, where the latter can be excluded at the scale of the S2 periapse. Future observations of stars in the S cluster using instruments such as Mid-IR Extremely Large Telescope Imager and Spectrograph at Extremely Large Telescope with the photometric sensitivity of as much as 10−3 mag will allow the GC medium to be probed at intermediate scales at densities as low as ∼700 cm−3 in case of non-thermal bow-shock emission. The new instrumentation, in combination with discoveries of stars with smaller pericentre distances, will help to independently constrain the density profile around Sagittarius A* (Sgr A*).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3