Impact of non-gravitational effects on chaotic properties of retrograde orbits

Author:

Kankiewicz PawełORCID,Włodarczyk Ireneusz

Abstract

Context. Dynamical studies of asteroid populations in retrograde orbits, that is with orbital inclinations greater than 90 degrees, are interesting because the origin of such orbits is still unexplained. Generally, the population of retrograde asteroids includes mostly Centaurs and transneptunian objects. A special case is the near-Earth object (343158) 2009 HC82 from the Apollo group. Another interesting object is the comet 333P/LINEAR, which for several years was considered the second retrograde object approaching Earth. Another comet in retrograde orbit, 161P Hartley/IRAS appears to be an object of similar type. Thanks to the large amount of observational data for these two comets, we tested various models of cometary non-gravitational forces applied to their dynamics. Aims. The goal was to estimate which of non-gravitational perturbations could affect the stability of retrograde bodies. In principle, we study the local stability by measuring the divergence of nearby orbits. Methods. We numerically determined Lyapunov characteristic indicators and the associated Lyapunov times (LT). This time, our calculations of these parameters were extended by more advanced models of non-gravitational perturbations (i.e. Yarkovsky drift and in selected cases cometary forces). This allowed us to estimate chaos in the Lyapunov sense. Results. We found that the Yarkovsky effect for obliquities of γ = 0° and γ = 180° can change the LT substantially. In most cases, for the prograde rotation, we received more stable solutions. Moreover, we confirmed the role of retrograde resonances in this process. Additionally, the studied cometary effects also significantly influence the long-term behaviour of the selected comets. The LT can reach values from 100 to over 1000 yr. Conclusions. All of our results indicate that the use of models with non-gravitational effects for retrograde bodies is clearly justified.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3