Combined analysis of AMS-02 (Li,Be,B)/C, N/O, 3He, and 4He data

Author:

Weinrich N.,Génolini Y.,Boudaud M.,Derome L.,Maurin D.ORCID

Abstract

Context. The Alpha Magnetic Spectrometer (AMS-02) measured several secondary-to-primary ratios enabling a detailed study of Galactic cosmic-ray transport. Aims. We constrain previously derived benchmark scenarios (based on AMS-02 B/C data only) using other secondary-to-primary ratios to test the universality of transport and the presence of a low-rigidity diffusion break. Methods. We use the 1D thin disc/thick halo propagation model of USINE V3.5 and a χ2 minimisation accounting for a covariance matrix of errors (AMS-02 systematics) and nuisance parameters (cross-sections and solar modulation uncertainties). Results. The combined analysis of AMS-02 Li/C, Be/C, and B/C strengthens the case for a diffusion slope of δ = 0.50 ± 0.03 with a low-rigidity break or upturn of the diffusion coefficient at GV rigidities. Our simple model can successfully reproduce all considered data (Li/C, Be/C, B/C, N/O, and 3He/4He), although several issues remain: (i) the quantitative agreement depends on the assumptions made on the poorly constrained correlation lengths of AMS-02 data systematics; (ii) combined analyses are very sensitive to production cross-sections, and we find post-fit values differing by ∼5 − 15% from their most likely values (roughly within currently estimated nuclear uncertainties); (iii) two very distinct regions of the parameter space remain viable, either with reacceleration and convection, or with purely diffusive transport. Conclusions. To take full benefit of combined analyses of AMS-02 data, better nuclear data and a better handle on energy correlations in the data systematic are required. AMS-02 data on heavier species are eagerly awaited to explore cosmic-ray propagation scenarios further.

Funder

Villum Fonden

ANR

Investissements d’avenir, Labex ENIG-MASS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3