Facing problems in the determination of stellar temperatures and gravities: Galactic globular clusters

Author:

Mucciarelli A.,Bonifacio P.

Abstract

We analysed red giant branch stars in 16 Galactic globular clusters, computing their atmospheric parameters both from the photometry and from excitation and ionisation balances. The spectroscopic parameters are lower than the photometric ones and this discrepancy increases with decreasing metallicity, reaching differences of ~350 K in effective temperature and ~1 dex in surface gravity at [Fe/H] ~ –2.5 dex. We demonstrate that the spectroscopic parameters are inconsistent with the position of the stars in the colour-magnitude diagram, providing overly low temperatures and gravities, and predicting that the stars are up to about 2.5 magnitudes brighter than the observed magnitudes. The parameter discrepancy is likely due to inadequacies in the adopted physics; in particular the assumption of a one-dimensional geometry could be the origin of the observed slope between iron abundances and excitation potential that leads to low temperatures. However, the current modelling of 3D/NLTE radiative transfer for giant stars seems to be unable to totally erase this slope. We conclude that the spectroscopic parameters are incorrect for metallicity lower than –1.5 dex and that photometric temperatures and gravities should be adopted for these red giant stars. We provide a simple relation to correct the spectroscopic temperatures in order to put them onto a photometric scale.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3