The parallax zero-point offset from Gaia EDR3 data

Author:

Groenewegen M. A. T.ORCID

Abstract

The second data release of Gaia revealed a parallax zero-point offset of −0.029 mas based on quasars. The value depended on the position on the sky, and also likely on magnitude and colour. The offset and its dependence on other parameters inhibited improvement in the local distance scale using for example the Cepheid and RR Lyrae period–luminosity relations. Analysis of the recent Gaia Early Data Release 3 (EDR3) reveals a mean parallax zero-point offset of −0.021 mas based on quasars. The Gaia team addresses the parallax zero-point offset in detail and proposes a recipe to correct for it based on ecliptic latitude, G-band magnitude, and colour information. This paper presents a completely independent investigation into this issue focusing on the spatial dependence of the correction based on quasars and the magnitude dependence based on wide binaries. The spatial and magnitude corrections are connected to each other in the overlap region in the range 17 < G < 19. The spatial correction is presented at several spatial resolutions based on the HEALPix formalism. The colour dependence of the parallax offset is unclear and in any case secondary to the spatial and magnitude dependence. The spatial and magnitude corrections are applied to two samples of brighter sources, namely a sample of approximately 100 stars with independent trigonometric parallax measurements from Hubble Space Telescope data, and a sample of 75 classical cepheids using photometric parallaxes. The mean offset between the observed GEDR3 parallax and the independent trigonometric parallax (excluding outliers) is about −39 μas, and after applying the correction it is consistent with being zero. For the classical cepheid sample the analysis presented here suggests that the photometric parallaxes may be underestimated by about 5%.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3