Phase-resolved spectrum of the Crab pulsar from NICER

Author:

Vivekanand M.ORCID

Abstract

Context. Studies of the high-energy emission regions of rotation-powered pulsars are typically based on folded light curves (FLCs) and phase-resolved spectra (PRS). Aims. This work uses the NICER observatory to obtain the highest resolution FLC and PRS of the Crab pulsar at soft X-ray energies. Methods. NICER has accumulated about 347 ksec of data on the Crab pulsar. The data were processed using the standard analysis pipeline. Stringent filtering was done for spectral analysis. The individual detectors are calibrated in terms of the long-time light curve (LTLC), raw spectrum, and deadtime. The arrival times of the photons are established in reference to the Solar System barycenter, while the rotation frequency ν and its time derivative ν˙ are used to derive the rotation phase of each photon. Results. The LTLCs, raw spectra, and deadtimes of the individual detectors are statistically similar; the latter two show no evolution with epoch and the detector deadtime is independent of photon energy. The deadtime for the Crab pulsar, taking into account the two types of deadtime, is only ≈7–8% larger than that obtained using the cleaned events. Detector 00 behaves slightly differently from the rest, but can be used for spectral work. The PRS of the two peaks of the Crab pulsar are obtained at a resolution that is better than 1∕512 in rotation phase. The FLC very close to the first peak rises slowly and falls faster. The spectral index of the PRS is almost constant very close to the first peak. Conclusions. The high-resolution FLC and PRS of the peaks of the Crab pulsar provide important constraints for the formation of caustics in the emission zone.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3