Quantum study of reaction O (3P) + H2 (v,j) → OH + H: OH formation in strongly UV-irradiated gas

Author:

Veselinova A.ORCID,Agúndez M.ORCID,Goicoechea J. R.ORCID,Menéndez M.,Zanchet A.ORCID,Verdasco E.,Jambrina P. G.ORCID,Aoiz F. J.ORCID

Abstract

The reaction between atomic oxygen and molecular hydrogen is an important one in astrochemistry as it regulates the abundance of the hydroxyl radical and serves to open the chemistry of oxygen in diverse astronomical environments. However, the existence of a high activation barrier in the reaction with ground-state oxygen atoms limits its efficiency in cold gas. In this study we calculated the dependence of the reaction rate coefficient on the rotational and vibrational state of H2, and evaluated the impact on the abundance of OH in interstellar regions strongly irradiated by far-UV photons where H2 can be efficiently pumped to excited vibrational states. We used a recently calculated potential energy surface and carried out time-independent quantum mechanical scattering calculations to compute rate coefficients for the reaction O (3P) + H2 (v, j) → OH + H, with H2 in vibrational states v = 0–7 and rotational states j = 0–10. We find that the reaction becomes significantly faster with increasing vibrational quantum number of H2. However, even for high vibrational states of H2 (v = 4–5), for which the reaction is barrierless, the rate coefficient does not strictly attain the collision limit and still maintains a positive dependence with temperature. We implemented the calculated state-specific rate coefficients in the Meudon PDR code to model the Orion Bar PDR and to evaluate the impact on the abundance of the OH radical. We find the fractional abundance of OH is enhanced by up to one order of magnitude in regions of the cloud corresponding to AV = 1.3–2.3 mag, compared to the use of a thermal rate coefficient for O + H2, although the impact on the column density of OH is modest, about 60%. The calculated rate coefficients will be useful to model and interpret JWST observations of OH in strongly UV-illuminated environments.

Funder

Ministerio de Ciencia e Innovación

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3