Reconnection-driven flares in 3D black hole magnetospheres

Author:

El Mellah I.ORCID,Cerutti B.ORCID,Crinquand B.ORCID

Abstract

Context. Low-luminosity supermassive and stellar-mass black holes (BHs) may be embedded in a collisionless and highly magnetized plasma. They show nonthermal flares indicative of particles being accelerated up to relativistic speeds by dissipative processes in the vicinity of the BH. During near-infrared flares from the supermassive BH Sagittarius A* (Sgr A*), the GRAVITY Collaboration detected circular motion and polarization evolution, which suggest the presence of transient synchrotron-emitting hot spots moving around the BH. Aims. We study 3D reconnecting current layers in the magnetosphere of spinning BHs to determine whether plasma-loaded flux ropes which are formed near the event horizon could reproduce the hot spot observations and help constrain the BH spin. Methods. We performed global 3D particle-in-cell simulations in Kerr spacetime of a pair plasma embedded in a strong and large-scale magnetic field originating in a perfectly conducting disk in prograde Keplerian rotation. Results. A cone-shaped current layer develops which surrounds the twisted open magnetic field lines threading the event horizon. Spinning magnetic field lines coupling the disk to the BH inflate and reconnect a few gravitational radii above the disk. This quasi-periodic cycle accelerates particles, which accumulate in a few macroscopic flux ropes rotating with the outermost coupling magnetic field line. Once flux ropes detach, they propagate in the current layer following what appears as a rapidly opening spiral when seen face-on. A single flux rope carries enough relativistic electrons and positrons to emit synchrotron radiation at levels suitable to reproduce the peak-luminosity of the flares of Sgr A* but it quickly fades away as it flows away. Conclusions. Our kinematic analysis of the flux ropes motion favors a BH spin of 0.65 to 0.8 for Sgr A*. The duration of the flares of Sgr A* can only be explained provided the underlying magnetic loop seeded in the disk mid-plane has a finite lifetime and azimuthal extension. In this scenario, the hot spot corresponds to a spinning arc along which multiple reconnection sites power the net emission as flux ropes episodically detach.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3