The MUSE-Faint survey

Author:

Vaz DanielORCID,Brinchmann Jarle,Zoutendijk Sebastiaan L.,Boogaard Leindert A.,Kamann Sebastian,Read Justin I.,Roth Martin M.,Weilbacher Peter M.,Steinmetz Matthias

Abstract

Context. Leo T (MV = −8.0) is a peculiar dwarf galaxy that stands out for being both the faintest and the least massive galaxy known to contain neutral gas and to display signs of recent star formation. It is also extremely dark-matter dominated. As a result, Leo T presents an invaluable opportunity to study the processes of gas and star formation at the limit where galaxies are found to have rejuvenating episodes of star formation. Aims. Our approach to studying Leo T involves analysing photometry and stellar spectra to identify member stars and gather information about their properties, such as line-of-sight velocities, stellar metallicities, and ages. By examining these characteristics, we aim to better understand the overall dynamics and stellar content of the galaxy and to compare the properties of its young and old stars. Methods. Our study of Leo T relies on data from the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope, which we use to identify 58 member stars of the galaxy. In addition, we supplement this information with spectroscopic data from the literature to bring the total number of member stars analysed to 75. To further our analysis, we complement these data with Hubble Space Telescope (HST) photometry. With these combined datasets, we delve deeper into the galaxy’s stellar content and uncover new insights into its properties. Results. Our analysis reveals two distinct populations of stars in Leo T. The first population, with an age of ≲500 Myr, includes three emission-line Be stars comprising 15% of the total number of young stars. The second population of stars is much older, with ages ranging from > 5 Gyr to as high as 10 Gyr. We combine MUSE data with literature data to obtain an overall velocity dispersion of σv = 7.07−1.12+1.29 km s−1 for Leo T. When we divide the sample of stars into young and old populations, we find that they have distinct kinematics. Specifically, the young population has a velocity dispersion of 2.31−1.65+2.68 km s−1, contrasting with that of the old population, of 8.14−1.38+1.66 km s−1. The fact that the kinematics of the cold neutral gas is in good agreement with the kinematics of the young population suggests that the recent star formation in Leo T is linked with the cold neutral gas. We assess the existence of extended emission-line regions and find none to a surface brightness limit of < 1 × 10−20 erg s−1 cm−2 arcsec−2 which corresponds to an upper limit on star formation of ∼10−11M yr−1 pc−2, implying that the star formation in Leo T has ended.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From gas to stars: MUSEings on the internal evolution of IC 1613;Astronomy & Astrophysics;2024-09

2. The MUSE-Faint survey;Astronomy & Astrophysics;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3