Nature of continuum emission in the source of the water maser super-flare G25.65+1.04

Author:

Bayandina O. S.ORCID,Burns R. A.ORCID,Kurtz S. E.ORCID,Moscadelli L.ORCID,Sobolev A. M.ORCID,Stecklum B.ORCID,Val’tts I. E.

Abstract

Context. The G25.65+1.04 source is one of the few known ‘super-flare’ water masers in the Milky Way, but in contrast to other super-flare sources, it remains the least studied. In fact, even the nature of the source driving the water maser is still unclear. Aims. With this project, we aim to clarify the composition and properties of the G25.65+1.04 region by means of examining the parameters of the continuum sources and establishing their association with masers of different types. Methods. Our previous VLA (Karl G. Jansky Very Large Array) observation detected four continuum peaks (VLA 1-4), three of which (VLA 1-3) were closely spaced and presented a linear orientation. However, the observation, which used the VLA B configuration, lacked the spatial resolution to resolve individual sources. A higher-resolution (A configuration) VLA observation of the continuum and spectral lines was conducted in 2019 using the L, S, C, and Ku bands. Results. For the first time, the continuum source VLA 1 – associated with the flaring water maser – is resolved into two components: VLA 1A and 1B. The component VLA 1A and the water maser are found to spatially coincide and are thought to be powered by the same source, a protostar at an early stage of evolution showing active ejection. We argue that VLA 2 pinpoints an actively ejecting high-mass protostar, as it is associated with a 6.7 GHz methanol maser and a magnetised jet traced by a 22 GHz H2O maser. Highly polarised OH maser emission is detected in the vicinity of VLA 1-2, with the brightest OH maser found in VLA 2. The magnetic field, identified from the OH maser emission, ranges from ∼ + 0.4 mG in VLA 1A to ∼ − 8 mG in VLA 2. Conclusions. The G25.65+1.04 region is found to consist of at least two young stellar objects: VLA 1A and VLA 2. Both sources are found to be at an active accretion and ejection stage of evolution.

Funder

Italian Ministry of University and Research

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3