A detailed look at the thermal and nonthermal X-ray emission from the Vela supernova remnant with SRG/eROSITA

Author:

Mayer Martin G. F.ORCID,Becker WernerORCID,Predehl Peter,Sasaki ManamiORCID

Abstract

Context. The Vela supernova remnant (SNR) is one of the most nearby and extended objects in the X-ray sky. It constitutes a unique laboratory for studying the thermal and nonthermal X-ray emission from an evolved SNR and its central plerion at an unprecedented level of detail. Aims. Our goal is to characterize the hot ejecta and shocked interstellar medium (ISM) associated with the Vela SNR, as well as the synchrotron-emitting relativistic electrons injected into the ambient medium by the central pulsar. To achieve this, we analyzed the dataset of Vela acquired by SRG/eROSITA during its first four all-sky surveys. Methods. We present and analyze the energy-dependent morphology of Vela using X-ray images extracted in multiple energy bands. A quantitative view of the physical parameters affecting the observed thermal and nonthermal emission is obtained by performing spatially resolved X-ray spectroscopy of over 500 independent regions using multicomponent spectral models. Results. Imaging demonstrates that the X-ray emission of the Vela SNR consists of at least three morphologically and energetically distinct components, with shell-like structures dominating below 0.6 keV, radial outward-directed features becoming apparent at medium energies, and the pulsar wind nebula (PWN) dominating the hard emission above 1.4 keV. Our spectroscopy reveals a highly structured distribution of X-ray absorption column densities, which intriguingly appears to lack any correlation with optical extinction measurements, possibly due to dust destruction or a clumpy ISM. The shock-heated plasma in Vela is found to be comparatively cool, with a median temperature of 0.19 keV, but exhibits several, often ejecta-rich, warmer regions. Within the observed ejecta clumps, we find an unexpectedly high concentration of neon and magnesium relative to oxygen, when compared to nucleosynthetic predictions. This includes the bright “shrapnel D”, in which we can separate shocked ISM in the soft bow-shock from a hot, ejecta-rich clump at its apex, based on the new data. Finally, we find an extremely extended, smoothly decreasing distribution of synchrotron emission from the PWN, which extends up to three degrees (14 pc) from the pulsar. The integrated X-ray luminosity of the PWN in the 0.5–8.0 keV energy band corresponds to 1.5 × 10−3 of the pulsar’s present-day spin-down power. The extended PWN emission likely traces the diffusion of a high-energy electron population in an ISM-level magnetic field, which requires the existence of a TeV counterpart powered by inverse Compton radiation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The SRG/eROSITA all-sky survey;Astronomy & Astrophysics;2024-01-31

2. Observations of Multiphase, High-velocity, Shocked Gas in the Vela Supernova Remnant*;The Astrophysical Journal;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3