Interior dynamics of super-Earth 55 Cancri e

Author:

Meier Tobias G.ORCID,Bower Dan J.ORCID,Lichtenberg TimORCID,Hammond MarkORCID,Tackley Paul J.ORCID

Abstract

The ultra-short-period super-Earth 55 Cancri e has a measured radius of 1.88 Earth radii. Previous thermal phase curve observations suggest a strong temperature contrast between the dayside and nightside of around 1000 K; the hottest point is shifted 41 ± 12 degrees east from the substellar point, indicating some degree of heat circulation. The dayside (and potentially even the nightside) is hot enough to harbour a magma ocean. We used results from general circulation models (GCMs) of atmospheres to constrain the surface temperature contrasts. There is still a large uncertainty on the vigour and style of mantle convection in super-Earths, especially those that experience stellar irradiation high enough to harbour a magma ocean. In this work our aim is to constrain the mantle dynamics of the tidally locked lava world 55 Cancri e. Using the surface temperature contrasts as a boundary condition, we model the mantle flow of 55 Cancri e using 2D mantle convection simulations, and investigate how the convection regimes are affected by the different climate models. We find that large super-plumes form on the dayside if that hemisphere is covered by a magma ocean and the nightside remains solid or only partially molten. Cold material descends into the deep interior on the nightside, but no strong downwellings form. In some cases the super-plume also moves several tens of degrees towards the terminator. A convective regime where the upwelling is preferentially on the dayside might lead to preferential outgassing on that hemisphere which could lead to the build-up of atmospheric species that could be chemically distinct from the nightside.

Funder

Swiss National Science Foundation

Branco Weiss Foundation

Simons Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3