The influence of planetesimal fragmentation on planet formation

Author:

Kaufmann NicolasORCID,Alibert YannORCID

Abstract

Context. The effects of planetesimal fragmentation on planet formation have been studied via various models on single embryos, and have therefore mostly neglected concurrent effects in the outer disk. They show that planetesimal fragmentation can either hinder or aid planet formation, due to the introduction of competing effects, namely speeding up accretion and depleting the feeding zone of forming planets. Aims. We investigate the influence of the collisional fragmentation of planetesimals on the planet formation process using a population synthesis approach. Our aim is to investigate its effects for a large set of initial conditions and also to explore the consequences on the formation of multiple embryos in the same disk. Methods. We ran global planet formation simulations including fragmentation, drift, and an improved ice line description. To do this we used a fragmentation model in our code. The initial conditions for the simulations that are informed by observations are varied to generate synthetic exoplanet populations. Results. Our synthetic populations show that depending on the typical size of solids generated in collisions, fragmentation in tandem with radial drift can either enhance or hinder planet formation. For larger fragments we see increased accretion throughout the populations especially beyond the ice line. However, the shorter drift timescale of smaller fragments, due to their stronger coupling to the gas, can hinder the formation process. Furthermore, beyond the ice line fragmentation promotes late growth when the damping by gas drag fades. Conclusions. Fragmentation significantly affects the planet formation process in various ways for all types of planets and warrants further investigation.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3