Study of the GeV to TeV morphology of the γ Cygni SNR (G 78.2+2.1) with MAGIC and Fermi-LAT

Author:

,Acciari V. A.,Ansoldi S.,Antonelli L. A.,Arbet Engels A.,Baack D.,Babić A.,Banerjee B.,Barres de Almeida U.,Barrio J. A.,Becerra González J.,Bednarek W.,Bellizzi L.,Bernardini E.,Berti A.,Besenrieder J.,Bhattacharyya W.,Bigongiari C.,Biland A.,Blanch O.,Bonnoli G.,Bošnjak Ž.,Busetto G.,Carosi R.,Ceribella G.,Cerruti M.,Chai Y.,Chilingarian A.,Cikota S.,Colak S. M.,Colin U.,Colombo E.,Contreras J. L.,Cortina J.,Covino S.,D’Elia V.,Da Vela P.,Dazzi F.,De Angelis A.,De Lotto B.,Delfino M.,Delgado J.,Depaoli D.,Di Pierro F.,Di Venere L.,Do Souto Espiñeira E.,Dominis Prester D.,Donini A.,Dorner D.,Doro M.,Elsaesser D.,Fallah Ramazani V.,Fattorini A.,Ferrara G.,Foffano L.,Fonseca M. V.,Font L.,Fruck C.,Fukami S.,García López R. J.,Garczarczyk M.,Gasparyan S.,Gaug M.,Giglietto N.,Giordano F.,Gliwny P.,Godinović N.,Green D.,Hadasch D.,Hahn A.,Herrera J.,Hoang J.,Hrupec D.,Hütten M.,Inada T.,Inoue S.,Ishio K.,Iwamura Y.,Jouvin L.,Kajiwara Y.,Karjalainen M.,Kerszberg D.,Kobayashi Y.,Kubo H.,Kushida J.,Lamastra A.,Lelas D.,Leone F.,Lindfors E.,Lombardi S.,Longo F.,López M.,López-Coto R.,López-Oramas A.,Loporchio S.,Machado de Oliveira Fraga B.,Masuda S.,Maggio C.,Majumdar P.,Makariev M.,Mallamaci M.,Maneva G.,Manganaro M.,Mannheim K.,Maraschi L.,Mariotti M.,Martínez M.,Mazin D.,Mender S.,Mićanović S.,Miceli D.,Miener T.,Minev M.,Miranda J. M.,Mirzoyan R.,Molina E.,Moralejo A.,Morcuende D.,Moreno V.,Moretti E.,Munar-Adrover P.,Neustroev V.,Nigro C.,Nilsson K.,Ninci D.,Nishijima K.,Noda K.,Nogués L.,Nozaki S.,Ohtani Y.,Oka T.,Otero-Santos J.,Palatiello M.,Paneque D.,Paoletti R.,Paredes J. M.,Pavletić L.,Peñil P.,Peresano M.,Persic M.,Prada Moroni P. G.,Prandini E.,Puljak I.,Rhode W.,Ribó M.,Rico J.,Righi C.,Rugliancich A.,Saha L.,Sahakyan N.,Saito T.,Sakurai S.,Satalecka K.,Schleicher B.,Schmidt K.,Schweizer T.,Sitarek J.,Šnidarić I.,Sobczynska D.,Spolon A.,Stamerra A.,Strom D.,Strzys M.ORCID,Suda Y.,Surić T.,Takahashi M.,Tavecchio F.,Temnikov P.,Terzić T.,Teshima M.,Torres-Albà N.,Tosti L.,van Scherpenberg J.,Vanzo G.,Vazquez Acosta M.,Ventura S.,Verguilov V.,Vigorito C. F.,Vitale V.,Vovk I.,Will M.,Zarić D.,Celli S.,Morlino G.

Abstract

Context. Diffusive shock acceleration (DSA) is the most promising mechanism that accelerates Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). It is based on particles scattering caused by turbulence ahead and behind the shock. The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the γ Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, our aim is to understand γ-ray emission in the vicinity of the γ Cygni SNR. Methods. We observed the region of the γ Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between 2015 May and 2017 September recording 87 h of good-quality data. Additionally, we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their γ-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions that can be associated with the SNR and that dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted, and the level of turbulence was found to change over the lifetime of the SNR.

Funder

BMBF, Germany

MPG, Germany

INFN, Italy

INAF, Italy

SNF, Switzerland

ERDF/MINECO, Spain

Department of Atomic Energy, India

ICRR, the University of Tokyo, Japan

JSPS, Japan

MEXT, Japan

Ministry of Education and Science, Bulgaria

Academy of Finland

Centro de Excelencia “Severo Ochoa”, Spain

Unidad de Excelencia “María de Maeztu”, Spain

"la Caixa" Foundation, Spain

HrZZ, Croatia

University of Rijeka, Croatia

DFG, Germany

National Research Centre, Poland

MCTIC, Brazil

CNPq, Brazil

FAPERJ, Brazil

NASA, USA

DOE, USA

CEA/IN2P3, France

ASI, Japan

KEK, Japan

JAXA, Japan

K. A. Wallenberg Foundation, Sweden

Research Council, Sweden

SNSB, Sweden

CNES, France

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3