Nowhere to hide: Radio-faint AGN in the GOODS-N field

Author:

Radcliffe J. F.ORCID,Barthel P. D.,Thomson A. P.,Garrett M. A.,Beswick R. J.,Muxlow T. W. B.

Abstract

Context. Obtaining a census of active galactic nuclei (AGN) activity across cosmic time is critical to our understanding of galaxy evolution and formation. Many AGN classification techniques are compromised by dust obscuration. However, very long baseline interferometry (VLBI) can be used to identify high brightness temperature compact radio emission (> 105 K) in distant galaxies that can only be reliably attributed to AGN activity. Aims. We present the second in a series of papers dealing with the compact radio population in the GOODS-N field. This paper reviews the various multi-wavelength data and AGN classification techniques in the context of a VLBI-detected sample and use these to investigate the nature of the AGN as well as their host galaxies. Methods. Multi-wavelength data from radio to X-ray were compiled for the GOODS-N AGN sample, and fourteen widely used multi-wavelength AGN classification schemes were tested. We discuss and compare the various biases that affect multi-wavelength and VLBI selection. We use the physical interpretation to imply the nature of VLBI-selected AGN and their hosts. Results. Firstly, we find that no single identification technique can identify all VLBI objects as AGN. Infrared colour–colour selection is most notably incomplete. However, the usage of multiple classification schemes can identify all VLBI-selected AGN, independently verifying similar approaches used in other deep field surveys. In the era of large area surveys with instruments such as the SKA and ngVLA, multi-wavelength coverage, which relies heavily upon observations from space, is often unavailable. Therefore, VLBI remains an integral component in detecting AGN of the jetted efficient and inefficient accretion types. Secondly, a substantial fraction (46%) of the VLBI AGN have no X-ray counterpart, which is most likely due to lack of sensitivity in the X-ray band. Thirdly, a high fraction of the VLBI AGN reside in low or intermediate redshift dust-poor early-type galaxies. These most likely exhibit inefficient accretion. Fourthly, A significant fraction of the VLBI AGN reside in symbiotic dusty starburst – AGN systems. Finally, in the appendix, we present an extensive compilation of the multi-wavelength properties of all the VLBI AGN in GOODS-N.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3