The evolutionary properties of the blue loop under the influence of rapid rotation and low metallicity

Author:

Zhao Liuyan,Song Hanfeng,Meynet Georges,Maeder Andre,Ekström Sylvia,Zhang Ruiyu,Qin Ying,Qi Shitao,Zhan Qiong

Abstract

Context. The physical mechanism leading to the formation of the blue loop in the Hertzsprung–Russell (HR) diagram is not satisfactorily explained by the evolutionary track of single stars. Rapid rotation and low metallicity drastically modify the internal structures and surface compositions of stars. Therefore, they provide a very significant pattern to investigate the evolutionary properties of the blue loop. Aims. In this paper, we mainly explore how rapid rotation and low metallicity have an important impact on the occurrence and extension of the blue loop. Methods. To this end, we implemented the rotating stellar evolution model, including the angular momentum transportation and chemical element mixing. We incorporated several initial rotational velocities and two characteristic metallicities in various models to explore the blue loop extension. Results. The blue loop can occur when the hydrogen burning shell merges with the hydrogen–helium abundance discontinuity. We find that the blue loop extension strongly depends on the amplitude and gradient of the hydrogen–helium discontinuity. The hydrogen–helium discontinuity is created by the intermediate convective region or the convective dredge-up. A steeper hydrogen gradient in association with a greater amplitude of the hydrogen abundance discontinuity may favour a hotter star. Conclusions. Both the low metallicity and rapid rotation tend to restrain the development of the outer convective envelope and thus disfavour the occurrence and extension of the blue loop. There are three main reasons for this occurrence. Firstly, the helium core and its core potential can be enlarged by rotational mixing or low metallicity. Secondly, rapid rotation reduces the convective dredge-up depth in the star with Z = 0.014 and the mass extension of the intermediate convective region in the star with Z = 0.0008. Both of these phenomena lead to a reduction of the amplitude of the hydrogen abundance gradient. Thirdly, strong rotational mixing in the model (i.e. vini = 350 km s−1) with Z = 0.0008 reduces the energy generation rate from the hydrogen burning shell. Without bending towards higher effective temperature in the HR diagram, the additional helium brought near the H-burning shell associated with the larger He core can cause the star to expand towards becoming a red giant star directly after the core hydrogen burning. Rapid rotation and low metallicity tend to produce surface enrichment of the ratio of nitrogen to carbon and reduce the 12C left in the core; this has an important influence on the stellar compactness of the supernovae progenitor.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stellar Neutrino Emission across the Mass–Metallicity Plane;The Astrophysical Journal Supplement Series;2023-12-19

2. The impact of convective criteria on the properties of massive stars;Astronomy & Astrophysics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3