Spiral-like features in the disc revealed by Gaia DR3 radial actions

Author:

Palicio P. A.ORCID,Recio-Blanco A.ORCID,Poggio E.ORCID,Antoja T.ORCID,McMillan P. J.ORCID,Spitoni E.ORCID

Abstract

Context. The so-called action variables are specific functions of the positions and velocities that remain constant along the stellar orbit. The astrometry provided by Gaia Early Data Release 3 (EDR3), combined with the velocities inferred from the Radial Velocity Spectrograph (RVS) spectra of Gaia DR3, allows for the estimation of these actions for the largest volume of stars to date. Aims. We explore such actions with the aim of locating structures in the Galactic disc. Methods. We computed the actions and the orbital parameters of the Gaia DR3 stars, assuming an axisymmetric model for the Milky Way. Using Gaia DR3 photometric data, we also selected a subset of giant stars with better astrometry as a control sample. Results. We find that the maps of the percentiles of the radial action JR reveal arc-like segments. We found a high JR region centered at R ≈ 10.5 kpc of 1 kpc width, as well as three arc-shape regions dominated by circular orbits at inner radii. We also identified the spiral arms in the overdensities of the giant population. Conclusions. For Galactic coordinates (X, Y, Z), we find good agreement with the literature in the innermost region for the Scutum-Sagittarius spiral arms. At larger radii, the low JR structure tracks the Local arm at negative X, while for the Perseus arm, the agreement is restricted to the X <  2 kpc region, with a displacement with respect to the literature at more negative longitudes. We detected a high JR area at a Galactocentric radii of ∼10.5 kpc, consistent with some estimations of the Outer Lindblad Resonance location. We conclude that the pattern in the dynamics of the old stars is consistent in several places with the spatial distribution of the spiral arms traced by young populations, with small potential contributions from the moving groups.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First spiral arm detection using dynamical mass measurements of the Milky Way disk;Astronomy & Astrophysics;2024-05-30

2. A new method of measuring Forbush decreases;Astronomy & Astrophysics;2024-03

3. Insights from super-metal-rich stars: Is the Milky Way bar young?;Astronomy & Astrophysics;2024-01

4. Growing local arm inferred by the breathing motion;Monthly Notices of the Royal Astronomical Society: Letters;2023-12-13

5. A sample of dust attenuation laws for Dark Energy Survey supernova host galaxies;Astronomy & Astrophysics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3