Bars and boxy/peanut bulges in thin and thick discs

Author:

Ghosh SoumavoORCID,Fragkoudi Francesca,Di Matteo Paola,Saha Kanak

Abstract

The Milky Way and a majority of external galaxies possess a thick disc. However, the dynamical role of the (geometrically) thick disc in the bar formation and evolution is not fully understood. Here, we investigate the effect of thick discs in the formation and evolution of bars by means of a suite of N-body models of (kinematically cold) thin and (kinematically hot) thick discs. We systematically varied the mass fraction of the thick disc, the thin-to-thick disc scale length ratio, and the thick disc scale height to examine the bar formation under diverse dynamical scenarios. Bars form almost always in our models, even in the presence of a massive thick disc. The part of the bar that consists of the thick disc closely follows the overall growth and temporal evolution of the part of the bar that consists of the thin disc, but the part of the bar in the thick disc is weaker than the part of the bar in the thin disc. The formation of stronger bars is associated with a simultaneous greater loss of angular momentum and a more intense radial heating. In addition, we demonstrate a preferential loss of angular momentum and a preferential radial heating of disc stars in the azimuthal direction within the extent of the bar in both thin and thick disc stars. For purely thick-disc models (without any thin disc), the bar formation critically depends on the disc scale length and scale height. A larger scale length and/or a larger vertical scale height delays the bar formation time and/or suppresses the bar formation almost completely in thick-disc-only models. We find that the Ostriker-Peeble criterion predicts the bar instability scenarios in our models better than the Efstathiou-Lake-Negroponte criterion.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3