Deep XMM-Newton observations of the northern disc of M31

Author:

Kavanagh Patrick J.ORCID,Sasaki ManamiORCID,Breitschwerdt Dieter,de Avillez Miguel A.,Filipović Miroslav D.,Galvin Timothy,Haberl FrankORCID,Hatzidimitriou DespinaORCID,Henze MartinORCID,Plucinsky Paul P.ORCID,Saeedi Sara,Sokolovsky Kirill V.ORCID,Williams Benjamin F.ORCID

Abstract

Aims. We use new deep XMM-Newton observations of the northern disc of M31 to trace the hot interstellar medium (ISM) in unprecedented detail and to characterise the physical properties of the X-ray emitting plasmas. Methods. We used all XMM-Newton data up to and including our new observations to produce the most detailed image yet of the hot ISM plasma in a grand design spiral galaxy such as our own. We compared the X-ray morphology to multi-wavelength studies in the literature to set it in the context of the multi-phase ISM. We performed spectral analyses on the extended emission using our new observations as they offer sufficient depth and count statistics to constrain the plasma properties. Data from the Panchromatic Hubble Andromeda Treasury were used to estimate the energy injected by massive stars and their supernovae. We compared these results to the hot gas properties. Results. The brightest emission regions were found to be correlated with populations of massive stars, notably in the 10 kpc star-forming ring. The plasma temperatures in the ring regions are ~0.2 up to ~0.6 keV. We suggest this emission is hot ISM heated in massive stellar clusters and superbubbles. We derived X-ray luminosities, densities, and pressures for the gas in each region. We also found large extended emission filling low density gaps in the dust morphology of the northern disc, notably between the 5 and 10 kpc star-forming rings. We propose that the hot gas was heated and expelled into the gaps by the populations of massive stars in the rings. Conclusions. It is clear that the massive stellar populations are responsible for heating the ISM to X-ray emitting temperatures, filling their surroundings, and possibly driving the hot gas into the low density regions. Overall, the morphology and spectra of the hot gas in the northern disc of M31 is similar to other galaxy discs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3